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(. I nt roduct ion.

The aim of this paper is to examine the class of p-cylindrical martinva Ilcs

in locally convex spaces. We study the relation between integrability and T-

continuity. Our general approach leads us to new results even in Ranach spa-

ces. One of the main results concerns the decomposability of cylindrical mar-

tingales in Banach spaces - Th. 2.2. The second part of this theorem is a

cylindrical version of the recent result of Chobanjan, linde and Tarieladze

[31 and may be considered as a new property of p-absolately summing operators.

MIetivier and Pellanmail ([41 and [5], Chapter 6) pointed out that it is

possible to develop the theory of stochastic integration with respect to 2-

Clindrical martingales in Banach spaces, cf. also [8]. The important ex',m-

ples are cylindrical Brownian motion and white noise in time and in space.

Such processes have been discussed in connection with quantum field theory,

theory of partial differential equations involving random terms and filtering

theory in electrical engineering, cf. for example 171 and references therein.

This motivated our study.

The plan of the paper is as follows. In the rest of this section we set

up the basic notation and conventions. Section 1 is devoted to cylindrical

random elements in locally convex spaces. Sometimes such elements are called

generalized processes. he relation between integrability and --continuity of

cylindrical random elements is established. It is an extension of Chatterji's

results obtained in 11] for random variables. Also the important problem of

decomposability of cylindrical random elements is studied. Th. 1.1 is an ad-

dendum to Kwapien's theorem (121, th. 2). Namely, using the locally convex

space technique we obtain the decomposition of XS* by a G-valued random varia-

ble instead of G"-valued random variable, where F,G are Banach spaces, X:F'+L
p

T

is a cylindrical random element and S:FG is a p-absolutely summing operator.
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The point is that, in contrast with other papers, we consider here T-continuous

cylindrical random elements.

In section 2 we consider the class of p-cylindrical martingales, defined as

a family of cylindrical random elements. Th. 2.1 gives the general form of

convergent p-cylindrical martingales, if F1 is a barrelled space and p > 1.

Th. 2.2 gives a condition under which some p-cylindrical martingales are decom-

posable by convergent vector valued martingales in Banach spaces.

In the paper we will use the following notation. The capital letters F,C

will denote vector spaces and f,g their elements, respectively. For the de-

tailed definitions and preliminary facts on vector spaces we refer the readers

to [111. The symbol <F,G> will denote the dual pair and < > its bilinear form

on F x G. For A c F by A* denote the polar of A. If F is a locally convex

space /l.c.s./ then F; denotes its tcnological dual and <f,f'> or <f',f> stands

for the value of a functional f' at a point f c F. By F and F we will denote

the space F with the weak topology a(F,G) and with the Mackey topology T(F,G),

respectively. If F is a Banach space then by F without any additional subscript

we mean the space F with its norm topology. If S is a linear operator S* will

stand for its adjoint.

I. Cylindrical random tlements. Let (0,B,P) be a probability space and Lp

fP(Q,8,P), p ? 0. Let <F,G> be a dual pair.

DEFINITION. Any linear operator X: G - LP is called a p-cylindrical random

eZement (p-c.r.e.), p >- 0.

If F is a locally convex space and G = F', then any map x: 2 F, which

is weakly measurable, F-valued random variable, defines a 0-c.r.e. X by the

following formula

X P = <x,f'> , P E F'



If additionally, x has a p-weak order, p>0. (i.e., <x,f'>1 p is integrablei then

\ is a p-i.r.c. The converse implication is not true in gencial; take 0,11,
2

F = L-[O,1 and X Id: L [0,1] 1710,1].

DEFINITION. Let p 1. We say that a p-c.r.e. X is integrable if for each

B 6 B there exist fB c F such that

<fBV9 > = fB Xg dP for each g r G

The most interesting case for our study is when F is locally convex and G = F'.

PROPOSITION 1.1 ([12], Th. 1)

Let X be a 1-c.r.c. on a l.c.s. F. Then

(a) If X: F' - LI is continuous, then X is integrable.
T1

(b) If F is sequentially complete and X is integrable, then X: F' - L1 is
T

continuous.

COROLLARY 1.1

Let F be a complete l.c.s. and X be a p-c.r.e., p > 1, then the following con-

ditions are equivalent:

(i) X: F' - LP is continuous.
T

(ii) X is integrable.

Proof. (i) => (ii). It follows from Prop. 1.1(a). (ii) => (i). By Prop. 1.1

(b) X is continuous as a mapping X: F' -L consequently X: F' L0 is also
TT

continuous. Since X(F') c Lp then by ([15], Th. 1) we have that X: F' - Lp

T

is continuous.

REMARK. Chatterji in [1] studied first the relation between Pettis integra-

bility of vector valued functions (random elements) and continuity of the cor-

responding c.r.e.. In particular, he has shown that if F is a complete l.c.s.

then x: 2 - F is Pettis integrable iff the corresponding c.r.e. X: F' - L

is continuous and X(U ) is relatively weak compact in L1 for each neighborhood

U of zero in F. This result gives the following,well known in Banach spaces,
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fact: each weakly measurable F-valued function with finite p-order, p 1, is

Pettis integrable.

We are now going to consider the situation for c.r.e.'s which are not neces-

sarily defined by random elements.

PROPOSITION. 1.2

Let F be a sequentially complete l.c.s. and let X be a 1-c.r.e. Then

(a) If X is integrable, then X(O0 ) is relatively weak compact in L1 for

each neighborhood U of zero in F.

(b) If additionally F is a reflexive Banach space, then the converse impli-

cation holds.

Proof. If U is an absolutely convex neighborhood of zero in F, then U0 is

a(F',F) compact ([11], III, 4.3 and IV, 1.4). Thus we have part (a).

(b) If X(B°) is weakly relatively compact in L1 , where B is the unit ball

in a reflexive Banach space F, then X is bounded. Since F is reflexive F' = F'

(cf. [11], IV, 5.5). Thus X: F' - L is continuous and consequently it is in-

tegrable.

COROLLARY. 1.2

Each p-c.r.e. X on a reflexive Banach space is integrable for p > 1.

Proof. By Proposition 1.2 it is enough to check that X(B°) is relatively weak

Icompact in L . Note that by the closed graph theorem

sup IX f'?p dP <

f'c B0

Consequently by the Vallbe-Poussin theorem (see [6], II, T22) the family

0 1{Xf',f'EB I is relatively weak compact in L

DEFINITION. (cf. [2]). Let F be a Banach space. We say that a c.r.e. X: F'+L P

T

is p-dP'-omposabZe, p > 0, if there exists a random element x: Q -+ F such that

10 X f' = <x,f'> for each f' c F'

20 fo IIxjUP dP<-



25

As we have pointed out before even in the Hilbert space L 2[0,1] there are c.r.e.'s

which are not 2-decomposable. But in the case of li lbert spaces it is easy to

find a full characterization. Namely, if F is a separable Hilbert space, then a

2-c.r.e. X: F' - L2 is 2-decomposable iff X is a Hilbert-Schmidt operator (see

[5], p. 177). In the case of Banach spaces the situation is much more difficult.

rhe next result gives a condition for p-decomposability of c.r.e. It seems

to be an interesting addendum to the Kwapien's theorem ([2], Th. 2) and will be

crucial for the proof of Th. 3.2. Let us recall that an operator S : F - G is

p-a?.oc uteZu swrrrin.y iff

/x/ jSfj p _< JP(s)f I<f,f' lp do~f') for all f E FBO

where w is a Radon measure on the unit ball B of F' equipped with the i(F',F)

topology, (cf. [91, 17.3.2).

THEOREM. 1.1

Let F,G be Banach spaces and S: F - G be a p-absolutely summing operator. If

X: F' - Lp is a continuous c.r.e., then
T

(i) Y = X S* is p-decomposable by a G-valued function y.

(ii) Let LP be a separable space, then we have the following inequality

1!y(-) 11 P dP !5 J(S)f ol~Xf'1 p ,~ff1
p' B0  L

where B0 and p are as in the Pietsch inequality /x/.

Proof. From the definition of i-continuity of X there exists an absolutely

convex and weakly compact subset A c F such that X(A0 ) is bounded in LP . The

continuity of S implies (cf. [11], p. 158) that S*: G - F ' and thus there
0r 0

exists an absolutely convex and weakly compact subset D c G such that S*(D°)cA°.

Using the Schaefer's convention ([11], III §7) let us introduce the auxiliary

Banach spaces
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F' = F' /p 1(0) . C' = C"/P-,(o)
A 0  T A 0 ) D0

FA = nA ,G = U nD

with norms defined by the corresponding Minkowski's functionals. Let

: F' - F' and D: G'T A GD0p0

denote the cannonical quotient mappings and let

A: FA F and G G

denote the cannonical injections. We have the following diagrams.

S* X Lp

G' T F'
D0  0 A°

where S* and X denote the induced mappings and T = A S* From the diagram
D D A 0 D

we see that XD and T are continuous. Let us note that T* is p-absolutely sum-

ming. Indeed, it follows from ([11], III Ex. 3c and IV §2) that (F' )' FA'
A

(G 1= GD and *=4 Thus T*: F -* G Moreover the inclusion S*(D 0 )cA 
0

D D A0 A*A D'

implies SCA) c D, (cf. [Il], IV, 2.3). Consequently T* = Sq)A is p-absolutely

summing. By the Kwapien's theorem (12], th. 2) we have that XDT is p-decomno-

sable by yD(.): 2 + (G )' G . Using the continuity of the cannonical injec-
D

tion ' D we claim that the following function

y( = DYD 2 G

decompose X S*.

The proof of part (ii) will be given in two steps. Consider first the

case X: F' -. LP is finite dimensional. Since X is continuous it is p-decompo-

sable by a function x: Q 1 F. Consequently XS* is p-decomposable by y = Sx:Q 1G.
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According to the assumption S is p-absolutely sununing. Ilence

f' ly(wo)jlP dP (p) = f5 JjSx(u) ip0(w)

-S 4P(S) fsf 0o1<X(wj , f > IP djj(f' dP(ow)

p UJ (s) f o1 Xf, lp dii(f,1)

Now let X be any c.r.e. and assume that the space Lp is separable. Thus Lp

has a Schauder basis and there exists a sequence of finite-dimensional opera-

tors Xn such that X is point approximated by Xn. Let X nS* and XS* be p-decom-

posable by yn(.) and y(.), respectively. We have

Jf 11yn ( ) -ym (w) lip P(dw)

!5 &P(s)f olI(Xn-Xm) f 1 P dii(f)

By using the Banach-Steinhaus theorem we observe that the right side of the

last inequality converges to zero as n,m - 0. Hence yn( -) is convergent in

LP(G). On the other hand for each g' E G' we have

LP

<y n ( .),g '> = X nS*g? -* XS*gt = <y(.),g'>

and consequently yn(-) - y(.) in LP(G). Thus the inequality in part (ii) holds

for any c.r.e. and the proof of th. 1.1 has been completed.

REMARK. The assumption LP is separable, used in part (ii) of the above theorem,

may be omitted in the following two cases:

10 X is compact

20 X is generated by a weakly measurable p-integrable function.

Tndeed, in the first case we may use the metric approximation property of L
p

and in the second case one may construct a needed approximation of X by using



operators X : F' LP generated by simple functions.

As an illustration to the last theorem consider the following:

EXA PLEi. As we know for a Hilbert space ii a 2-c.r.e. X: H' -* L is 2-decom-

posable iff X is a Hilbert-Schmidt operator. Consider a linear continucus ope-

rator S: H -, C, where G is a reflexive Banach space. Using the fact G'=C'T

define a new 2-c.r.e. Y in the Banach space (; by the following formula:

Y = XS*: G' - LV
T

Then it is easy to observe that Y is 2-decomposable too. Namely, if Xh

<X(-),h> for Vh t II' then y(-) Sx(*) decomposesY since for Vg' , G' we have

= <Sx(.),g'> =<x-),S*g'>

= XS*g t = Yg'

Thus we obtain that any 2-c.r.e. Y: G' L 2 which admits a factorization

through a Hilbert-Schmidt operator Y = XS*, where S: If - G is linear continu-

oUs and N: II' - L 2 is Ililbert-Schmidt, is 2-decomposable. But this faceori_,i-

tion :'ondition is equivalent to the statement that S is 2-ansolitely s',,in

(see f21, Cor. 2). Th. 1.1 shows that, in fact, the assumption "G is reflexive"

is not needed!

2. Cylindrical martingales. In this Section we will first introduce the con-

ditional expectation for c.r.e.'s with respect to some sub o-field A c B. For

this we will use the Pettis type integral which was discussed in the previous

section.

Let EA: L (8) - L I(A) denote the usual operator of the conditional expec-

tation, (see [6], §4), and let X: F' LP, p 1, be an integrable p-c.r..

obtained as a composition of operators EA and X. Note that if X: F' -T  L is
T

continuous, then Y EAx is also continuous. Thus if X: F r' L P is continu-

ous, 1 < p < ', then for each sub a-field A c 8 there exists a l-c.r.e.

¥ = 1AX: F11- L such that for each A ( A we have
T -

_ _ _ _ _ _ _
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'A y dP - fA I Ax dP = fA x dP

REMARKS. 1. Let us note that presented above extension of the notion of the

conditional expectation is also useful for random elements. As we know, any

random element with values in a Banach space F, x: Q - F, which has a weak p-

order defines a c.r.e. X: F' LP and we may put

F Ax = E AX i.e., E A<x,f'> = EA Xf' for any f' c F1

Thus always there exists the conditional expectation in the above generalized

sense. It is important since V.I. Rybakov ([10]) has given an example of Pet-

tis integrable random element x with values in a reflexive Banach space F such

that for some sub o-field A does not exist any A-measurable F-valued function

h such that

fA <hfl> dP = fA <xfl> dP for A E A, f' E F',

i.e., the ordinary conditional expectation for x does not exist. Moreover it

is known (see [14]) that one may construct such examples in any infinite dimen-

sional Banach spaces. Thus even for random elements the conditional expecta-

tion exists only in the above sense.

2. Note that the space LI(F)- of all Pettis integrable functions is not com-

plete but if F is a separable Frechet space then its completion L (F) = F 6 L1 ,

(see [13], Th. 3.2).

Finally, let us present some elementary properties of the conditional expec-

tation.

(a) < fA EAX dP, f'> =A EAXf' dP = fA Xf' dP, A E A , f' E F'

(b) If A c A', then (E X) = EAX

(c) If F is a Banach space, then EA is contraction.

(d) If F is a separable Frechet space and X c F&L , then

EA: FO L1 (8) + FS LI(A) is linear and continuous.

!E



1 U

Now we will proceed to investigate cylindrih martingales. Let us ASStuMIC

that F is a complete l.c.s. and TI" is a linear ordered set. The main results of

the paper are collected in Th. 2.1 and Th. 2.2.

DEFINITION. By a p-cyiindricaZ process (X t) teT we mean a family of p-c.r.e.

indexed by the parameter set T. It is integrable if for each t c T, x is an

integrable c.r.e. (cf. Section 1).

As an immediate consequence of Corollary 1.1 we have

PROPOSITION 2.1

i.et (X ) be a p-cylindrical process, p > 1, then the following conditions
t ttT

are equivalent:

(i) (Xt) tT is integrable.

(ii) (X ) is r-cont'nzuo4s, i.e., for each tcT Xt: F' - L is continuous.
t tT t "

DEFINITION. Let (A ) be a net of sub z-fields of B, i.e., if t < t,, then
t tET 1 2

A t t . A p-cylindrical process (Xt) tT' p ? 1, is called p-cuZindric.aZ
1 2

martinqa-e if

10 (Xt)tT is adapted with respect to (At) trT

2 (Xt)tET is T-continuous,

30 EAsX =X for s < t.
t s

PROPOSITION 2.2

Let (Xt)tT be a x-continuous p-cylindrical process, then the following conditions

are equivalent:

(i) (X t)tT is a p-cylindrical martingale,

(ii) (X tf')t z is a real martingale for each fl c F'.

THEOREM 2.1

Let F' be a barrelled space, p > 1 and let (Xt)teT be a p-cylindrical martingale

with respect to (A tt) T' such that

It
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IP [1X tf' , ffor each f'
t.,T

hen there exi;t p-c.r.e. X: 1' , 1) which is continuous and such that

x [ AtX t I

_roof. ' the assumption sup IxfiP < for any f' ,' Therefore the se-:t. T
rx ,tT} forms a family of continuous linear operators from F' - , which i

bounded in each point f' , F'. Since F' is barrelled space then the family
r_ T

Xt~t,TF is equicontinuous (see [11], p. 107). On the other hand, for each

f'- F' the process (X f') is a real p-integrable martingale, p > 1. Her. ,

r t tcT

by the martingale convergence theorem ([6], \T 22) for each f' F' there exists

a random variable C (.) -
p such that EAtF = Xt t' and Fix ttf-P

t ... Putting X(f') = T we define a linear operator X: T' - Lp. It is con-
T

tinuous as a closure point of the family {Xt.tET! in the point convergent topo-
• = EAt,

logy (cf. (ll, p. 109). Finally, the equality Xt  F X, t 6 T is a consequence

of the definition of the conditional expectation and the theorem is proved.

Let p -, 1 and let M4 ( ) denote the Banach space of all p-integrable real~P

martingales m = (in)T for which the following condition holds:

mfl -- lim (EImtlP) /P -

Leti us observe that any p-cylindrical martingale (Xt)t T defines a linear mar;ping

1:F - M (IR) by the formula _Xf' =(X f')t If F' is barrelled space and
p t tTI

slp FIXt f, P < , then X is continuous. Tndeed, by Theorem 2.1 there exists a
tET
continuous p-c.r.e. X such that

I1 f',1 x = lim(EIX tf'1P)"p < sup (FIX tf'I[P)'/P = sup(EI[EAtXjfrP) li/p

t t t

sup( E AtIXf'P)1/p = sup(EIXf']P)1 /P
t t

= (EJXf'IP)IP
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Thus we have proved the following.

PROPOSITION 2.3

l.et F' be a barrelled space and (X be a p-cylindrical martingale for which

sup EIX f'iP is finite for each f' F' p > 1, then M: F' 4 R(1) is continu-t t T t ..

OUS.

REMARK. Metivier and Pellaumail have studied the case of 2-cylindrical martin-

gales in Banach spaces. Note that Prop. 2.3 implies that our definition of

cylindrical martingales reduces to the one used in [4], and Prop. 2.2 shows

that it reduces to the second used in [51.

THEOREM 2. 2

Let 1 < p < -, F, G be Banach spaces and S: F - ( be a p-absolutely summing.

If (X t)tT is p-cylindrical martingale in F, then

(a) (X tS*)t T is p-decomposable by a G-valued martingale (yt )tc T

(b) If Lp is separable and for each f' E F' (X tf') is a convergent in

Lp martingale, then (X t S*) ET is p-decomposable by a convergent in LP(G) mar-

tingale (yt )tcT .

Proof. From Theorem 1.1 (i) the proof of part (a) follows immediately.

(b) Let for each t c T the c.r.c. X tS* be p-decomposable b yYt" Suppose

"a contrario" that (y t)tT does not converge in LP(C). Thus there exists > 0

and a sequence t < t2 < t3... of elements from T such that

EfIyt -yt lip > for each m,n = 1,2 ....
m n

On the other hand by Theorem 1.1 (ii) we have

Elyt -Yt Ip < '%P(S) f 0oIXt f'-Xt f' iP dvi(f')
m n P m n

By the assumption (Xtfl)tcT converges in Lp for each f' c F' and by the Banach-

Steinhaus theorem the operators Xt are uniformly bounded on B0 . Thus using the

dominated convergence theorem we see that the right side of the above inequality
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ooes to zero as m and n tends to -. This gives the needed contradiction and

thus completes the proof.

Using the last remark from Section I, we obtain as an immediate corollary

the recent result of Chobanjan, Linde and Tarieladze.

COROLLARY 2.1 ([3], p. 138).

Let 1 - p < -, F,C be Banach spaces and S: F - G be p-absolutely summing. If

(x ttc T is an F-valued process such that for each f' c F <xt , ft> is a coi-

vergent in Lp martingale, then (Sxt)tr T is a convergent in LP(G) martingale.

We conclude with an example showing why the decomposability problem is impor-

tant for cylindrical martingales.

EXAMPLE. Consider F = H is a Hilbert space. Then a 2-cylindrical martingale
L~2

Y H' - L is 2-decomposable iff the mapping It' 3 h - Y th ( is a Hilbert-

Schmidt operator for any t 6 T, i.e., Yt E ISH' j2 (R) ) . Thus there exists

the correspondence between Yt i HS(11' ,(It)) and an fl-valued martingale v tiM (If)

which is an isometry. In a similar way if G is another Hilbert space the mapping

(defined in [5])

x -f x dY

is an isometry from the space of all L(I],G)-valued processes which are square

integrable with relation to 2-cylintrical martingale Y into the space of square

integrable G-valued martingales (cf. [5], p. 185). This means that stochastic

integral fX dY considered as a 2-cylindrical martingale is 2-decomposable by a

G-valited martingale.
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